

Medium Voltage products
Indoor disconnectors OWD and OWIII

Contents

Introduction 4
Indoor disconnectors type OWD 5
Indoor disconnectors 3-poles type OWIII 13
Manual operating mechanisms type NRWO4-3 20
Motor operating devices type UEMC 40 22
Electromagnetic interlock type NO5 34

Introduction

ABB indoor disconnectors, type OWD and OWIII are meant for closing and opening electrical circuits in currentless state. In open position, they make a visible and safe isolating gap in the circuit which cuts off the circuit from the side of the power supply. These disconnectors may work in horizontal and vertical position, in one-, two- and three-pole versions depend of apparatus type. ABB offers wide range indoor disconnectors:
Rated voltages: 1,2-36 kV
Rated normal currents: 630-4000 A
Rated short-time withstand current 1 s up to 80 kA

Indoor disconnectors type OWD

1. Operating conditions

The disconnectors type OWD are to be installed indoors under the following conditions:
a) the ambient temperature range

- for standard model N3: 268 - 313K ($-5,+40^{\circ} \mathrm{C}$)
- for tropical model T3: $268-328 \mathrm{~K}\left(-5,+55^{\circ} \mathrm{C}\right)$
b) the relative humidity
- for standard model N3: 70% at $303 \mathrm{~K}\left(+30^{\circ} \mathrm{C}\right)$
- for tropical model T3: 85% at $303 \mathrm{~K}\left(+30^{\circ} \mathrm{C}\right)$
c) maximum altitude for installation (above sea level): 1000 m .

2. Designations and switch types

The structure of product marking is presented below:

OwD	3	10	w. 01	1
Type	Number of poles	Rated voltage	Rated current	Type of operating mechanism or pole distance (specified only for non-standard distances)
	$\begin{aligned} & 1 \text { - one } \\ & 2-\text { two } \\ & 3 \text { - three } \end{aligned}$	$\begin{aligned} & 01-1,2 \mathrm{kV} \\ & 03-3,6 \mathrm{kV} \\ & 10-12 \mathrm{kV} \\ & 20-24 \mathrm{kV} \end{aligned}$	w. $01-4000 \mathrm{~A}(\mathrm{~N} 3)$ 3150 A (ТЗ) w. 02-2500 A (N3) 2000 A (ТЗ) w. 03-2000 A (N3) w. 04-1600 A (N3, T3)	1 - with lever for coupling with manual operating mechanism NRWO4-3 or an isolating rod for 1,2 kV disconnectors, 2 - pneumatic operating mechanism type NP8 on the right hand side, 3 - pneumatic operating mechanism type NP8 on the left hand side, 4 - two pneumatic operating mechanisms type NP8, 500 - pole distance 500 mm

3. Design and operation

One-, two- and three-pole disconnectors type OWD are the vertical break disconnectors. The base is a steel frame to which the operating mechanism is fixed. Bracketing insulators are fastened to the frame and are the mounting for the current circuit which consists of two fixed contacts and one moving contact on each pole. The moving contacts are connected to the shaft by means of insulating pull-rods.
Pressing the moving contact to the fixed contact is solved in such a way that, at shorting currents, due to the effect of magnetic action upon the cover plate, the pressure increases. This allowed to obtain high rated values of peak current and shorting heat current. Two contact rails may be fixed to each terminal clamp
located on the permanent contacts with 2 or 6 screws (depending on the rated current).
Disconnectors type OWD are adapted to operate in horizontal or vertical position.

Disconnectors for rated voltages $3,6 \mathrm{kV}$ and higher may be operated manually by means of the manual operating mechanisms (HE, NRWO4-3) or by means of motor operating devices type UEMC40A _ (mounted on the front panel of the cubicle), UEMC4OK6 (mounted on the disconnector's base), pneumatic operating mechanism type NP8. Disconnectors for rated current $1,2 \mathrm{kV}$ - by means of the manual operating mechanism, motor drive type UEMC40A_ or an insulating stick. When driven by an insulating stick and UEMC4OK6 they should be situated vertical only.

4. Equipment

 Indoor disconnectors type OWD may be equipped with manual, motor, or pneumatic operating mechanism and an auxiliary switch Manual and motor driven operating mechanisms do not form an integral part of the disconnector and are supplied to separate orders. The type of operating mechanism applied depends on the type of disconnector, in accordance with table 1 (the table does not account for pneumatic operating mechanisms).Table 1

Type of disconnector	Type of operating mechanism
OWD101w.02, OWD301w.02	HE, NRWO4-3, UEMC40 A_
or isolating rod	

(0w.01, OWD310w. 02
OWD210w.01, OWD210w. 02
OWD320w.02, OWD220w. 02

A mechanism type NP8 is used as pneumatic operating mechanism, with rated pressure $0,6-1,2 \mathrm{MPa}$, one or two drives are used, depending on the rated pressure and model of the disconnector in accordance with the table 2.
If a disconnector is ordered with pneumatic operating mechanism or motor UEMC4OK6, it is coupled with the mechanism by the manufacturer and is an inseparable part of the complete supply.

Table 2

Type of disconnector	Type of operating mechanism	Number of drives
		$0,6 \mathrm{MPa}$
	$0,8 \div 2 \mathrm{MPa}$	
OWD303w.01, OWD203w.01		2
OWD303w.02, OWD203w.02	NP 8	1
OWD103w.01, OWD103w.02		1
OWD310w.01, OWD310w.02		2
OWD210w.01, OWD210w.02		2
OWD320w.02, OWD220w.02		2
OWD110w.01, OWD110w.02		1

An auxiliary switch type PS-3 or PS-O can also be supplied (to a separate order). It is meant to be mounted in the chamber and connected by a rod with the lever on the disconnector shaft. The standard length of the connecting rod is 1030 mm .

5. Technical data

Technical data of the disconnectors are tabulated in table 3 on page 4.

6. Standards

Disconnectors type OWD comply with the standards:
IEC 62271-1:2007, IEC 62271-102:2001.

7. Spare parts

The apparatus, for the duration of its technical lifetime, i.e. 1000 operations, does not require spare parts. On the user's request, spare parts may be supplied for those damaged during random events, however, their replacement should be consulted with the manufacturer each time, and made by ABB service or by employees of other companies who have been trained by the manufacturer.

8. Information to be given with orders

The following information should be given with order: product full name, rated voltage, rated current and type of the apparatus. Operating mechanisms for the disconnectors should be ordered separately. When ordering a disconnector with pneumatic operating mechanism, please specify on which side of the disconnector it is to be mounted.
9. Examples of orders

1. Two-pole indoor disconnector for rated voltage $3,6 \mathrm{kV}$, rated current 4000 A , with pneumatic operating mechanism on the left hand side, equipped with auxiliary switch type PS-3:
"Two-pole indoor disconnector, type OWD 203w.01/3, 3,6 kV, 4000 A, with operating mechanism NP8 on the left, with auxiliary switch type PS-3."
2. Three-pole indoor disconnector for rated voltage 12 kV , rated current 2500 A , with two pneumatic operating mechanisms (for pressure $0,6 \mathrm{MPa}$), with auxiliary switch PS-3:
"Three-pole indoor disconnector, type OWD $310 \mathrm{w} .02 / 4$, with auxiliary switch type PS-3, $12 \mathrm{kV}, 2500 \mathrm{~A}$, with two operating mechanisms NP8."
3. Attachments

Dimension drawings:
OW4/07.02
OW4/08.02
OW4/09.02
OW4/10.01
OW4/11.02

Table 3. Technical data of disconnectors type OWD

Dimensional drawings

Indoor disconnectors type OWD 3,6-24 kV
for motor drive UEMC4OA and manual drive HE

 'zO'MEOL AMO ZOMEOL OMO LO'MEOL OMO
 0
\vdots
\vdots
\vdots
\vdots
0 0
5
0
0
0
0
0
0 OWD 203w. 01 0
0
0
8
0
0
0
0
0
0 0
j
0
0
0
0
0
0
0
0
0
0 OWD 303w. 01

Type	$\begin{array}{c}U_{n} \\ {[k V]}\end{array}$

Dimensional drawings

Indoor disconnectors type OWD 3，6－24 kV
for pneumatic operating mechanism

Str	ZSEL	091	OLS	O¢Z	OLL	Gt	968	088	999	GZt	OLV	OSG	892	L915	086	928	098	$\begin{aligned} & \text { OO91 } \\ & \hline 0002 \text { ،00sz } \end{aligned}$	七	$\begin{array}{r} \text { to 'є0 } \\ \text { 'го'могદ वмо } \end{array}$
O\＆	LLt	091	ZLE	SL	9tt	St	GLZ	てぃて	OSS	S08	ZLZ	OSS	861	$20 t$	082	GLL		0092	9 9	乙O＇MEOL OMO
081	$\angle 2$	981	OLt	92	$98 t$	02	082	092	OSS	О乙を	062	069	861	$20 t$	082	GLL		000t	$9^{\circ} \varepsilon$	LOMEOL OMO
0¢1	乙て¢	091	OLt	O\＆	¢8¢	Gt	0¢ع	082	OSG	098	018	OSG	E61	20t	082	GLL		$\begin{aligned} & \text { OO91 } \\ & \text { '0002 '00g } \end{aligned}$	21	$\begin{array}{r} \text { tO ‘EO } \\ \text { ZO'MOLL OMO } \end{array}$
อ¢	ZZ9	981	067	O\＆1	099	02	SEE	082	OSS	SLE	018	069	861	$20 t$	082	GLL		000t	21	OMOLI OMO
¢ 1	L8L	091	ZLE	92	9tt	St	GLZ	こちて	OS9	S08	ZLZ	OS9	861	299	OtS	cet	092	0092	$9 \times$	ZO＇MEOZ OMO
0\＆	LEL	981	OLt	92	98	02	082	092	OS9	О乙を	062	069	861	299	OtS	SE	092	000t	9 ¢	10．MEOZ OMO
¢ 1	乙Z8	091	OLt	O\＆	GES	91	O\＆\＆	082	OSG	098	018	OSG	861	202	089	GLD	008	$\begin{aligned} & \text { O091 } \\ & \text { '0002 ،00gz } \end{aligned}$	21	
¢ 1	乙२8	981	06t	O\＆L	099	02	¢8¢	082	OS9	GLE	018	069	861	202	089	G $\angle 1$	008	000t	21	LOMMOLZ OMO
0¢	$\angle 26$	091	ZLE	SL	Stt	91	GLZ	てぃて	OS9	908	ZLZ	OS9	861	乙Z6	008	969	092	0092	9＇ε	乙O＇MEOE पMO
0 OL	$\angle 66$	981	0＜t	SL	987	02	082	092	Og9	О乙を	062	069	861	226	008	969	092	000t	9×1	10＇MEOE OMO
0\＆1	ZZんL	091	OLt	O\＆	G\＆9	91	$0 \varepsilon \varepsilon$	082	OG9	098	018	OS9	E61	2001	088	GLL	00ε	$\begin{aligned} & \text { OO91 } \\ & \text { '0002 ،oogz } \end{aligned}$	21	
0 01	乙てんレ	981	06t	081	099	02	¢¢¢	082	O99	GLE	018	069	E61	2001	088	GLL	008	000t	21	10＇MOLE CMO
1	s	y	d	N	W	7	\boldsymbol{r}	r	1	H	\bigcirc	\pm	\pm	\square	\bigcirc	\square	\forall	［ b ］	¢1］	

Dimensional drawings
Indoor disconnectors type OWD 3，6－24 kV with two pneumatic operating mechanisms

O\＆	981	06t	081	099	02	G\＆\％	082	OS9	GLE	018	069	861	乙ZS।	0821	GLIL	009	000t	21	$\begin{array}{r} \text { †/OOG/ } \\ \text { LO'MOLE OMO } \end{array}$
Str	091	OLG	OGZ	OLL	Gt	968	088	G99	GZt	OLt	OSG	892	乙S¢	086	GL8	098	$\begin{aligned} & 0091 \\ & 0002 \text { '0092 } \end{aligned}$	㲸	เ／to＇$\varepsilon 0$ ＇ZO＇mOZЕ ロMO
O\＆	091	OLt	0\＆1	G89	Gt	$0 \varepsilon \varepsilon$	082	OSG	098	0 ¢	OSg	¢61	己己ト	088	GLL	008	$\begin{aligned} & 0091 \\ & 0002 \text { '0092 } \end{aligned}$	21	$\begin{array}{r} t / t 0 \text { ‘ } \mathrm{\varepsilon O} \\ \text { ‘zOMOLE } \mathrm{MO} \end{array}$
081	981	06t	081	099	02	Se\＆	082	OS9	GLE	018	069	861	てZん	088	GLL	00ε	000t	21	t／LOMOLE OMO
O\＆1	981	06t	O\＆L	099	02	¢¢8	082	OS9	GLE	018	069	861	乙て8	089	GLt	008	000t	21	t／LO＇MOLZ OMO
0¢1	981	OLt	92	98t	02	082	092	OS9	0乙を	062	069	E61	$\angle 66$	008	969	092	000t	9＇\＆	t／L0＇meoz वMO
0¢1	981	0Lt	9L	$98 t$	02	082	092	OS9	0乙を	062	069	861	LEL	0ts	G\＆t	092	000t	9＇¢	t／LO＇MEOZ OMO
S	y	d	N	w	7	\boldsymbol{r}	r	1	H	\bigcirc	\pm	\exists	व	\bigcirc	9	\forall	［ 6 ］	＾4］	
ио！suәw！																			

Dimensional drawings

 Indoor disconnectors type OWD 1,2 kV

Drawing No. OW4/10.01

Dimensional drawings

Indoor disconnectors type OWD 3，6－24 kV
for manual operating mechanism type NRWO4－3

Drawing No．OW4／11．02

Stt	OLG	OGZ	0 OL	St	968	088	GZt	Oち¢	OLt	098	091	GSL	086	GL8	OGE	0091 ＇0002 ‘00gz	カて	$\begin{array}{r} \text { L/tO ‘غO } \\ \text { ‘ ZO'MEOL QMO } \end{array}$
081	ZLE	SL	Stt	S1	GLZ	てもて	908	997	ZLZ	O91	091	068	082	9く1		009z	$9 \times$	L／ZO＇MEOL OMO
081	OLt	SL	S8t	Oz	082	092	0マ\＆	997	062	981	981	068	082	9くL		000t	9＇¢	L／LOM MEOL OMO
O\＆	OLt	0\＆	¢८¢	St	0\＆\＆	082	098	OLG	018	091	091	068	082	921	－		21	L／t0 ‘と0 ＇ZO＇MOLL OMO
O\＆1	06t	O\＆	095	02	¢¢\＆	082	GLE	OLS	OLE	981	981	068	082	SLL	－	000t	21	H／LOMOLL OMO
O\＆1	ZLE	92	Stt	91	GLZ	こてて	908	GZL	ZLZ	OZt	091	OS9	Ots	SEt	092	009z	9＇$¢$	เ／ZО＇MEOZ वMO
OEL	OLt	SL	98t	02	082	092	О乙を	GZL	062	Stt	981	OS9	Ots	Set	092	000t	9＇¢	L／LOMEOZ OMO
¢ 1	OLt	O\＆	¢८¢	Gt	0¢\＆	082	098	018	018	09t	091	069	089	GLt	008	$\left[\begin{array}{l} \text { OO91 } \\ \hline 0002 \text { '0092 } \end{array}\right.$	2	L／t0 ‘e0 ‘ZO＇MOLZ OMO
0¢1	06t	O\＆	099	02	¢\＆8	082	9LE	018	018	987	981	069	089	GLt	008	000t	21	L／LOMOLZ CMO
081	Z28	9L	Stt	S1	GLZ	こちて	S0E	986	ZLZ	089	091	016	088	S69	092	0092	9＇¢	t／ZO＇m80¢ वMO
0 O1	OLt	92	981	02	082	092	О乙を	986	062	S0L	981	016	088	969	092	000t	9＇$¢$	h／LOME0E amo
0\＆	OLt	0\＆	¢¢¢	Gt	0¢\＆	082	098	OHLL	OLE	092	091	066	088	GLL	008	$\begin{aligned} & 0091 \\ & \hline 0002 \text { ، OOSZ } \end{aligned}$	21	
0¢1	$06 t$	O\＆L	099	02	¢\＆ะ	082	GLE	OLIL	OLE	982	981	066	088	GLL	008	000t	21	L／LOMOLE CMO
y	d	N	w	7	r	r	1	H	\bigcirc	\pm	\exists	\bigcirc	\bigcirc	a	\forall	［ 6 ］	［ 14 ］	
uo！suəu！																		

Three-pole indoor disconnectors type OWIII

1. Operating conditions

The disconnectors are meant for operation indoors, in temperate climate conditions, at surrounding temperatures ranging from $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. When installing the switches in other conditions, it is necessary to consult the manufacturer.
2. Designations and switch types

OWIII	20	/6	UD	-2	/160
Type of disconnector	Rated voltage	Rated current	Type of earthing switch	Type of insulator	Pole distance
	7,2-7,2 kV	6-630 A	UD - lower	1 - ceramic	Specified
	10-12 kV	8-800 A	earthing	2 - resin	only for pole
	$17,5-17,5 \mathrm{kV}$	10-1000 A	switch		distances
	$20-24 \mathrm{kV}$	12-1250 A	UG - upper		other than
	$30-36 \mathrm{kV}$	16-1600 A	earthing		typical:
			switch		12 kV
					- 200 mm
					24 kV
					- 275 mm
					36 kV
					- 360 mm

3. Design and operation

Disconnectors type OWII are the vertical break disconnectors. The disconnectors base is made as a welded steel frame. The frame together with the disconnector shaft and the limiters of the angle of rotation forms a non-dismountable unit. The base carries the insulators which support the main circuit consisting of two fixed contats and one moving contact in each pole. The moving contacts are connected with the disconnector shaft by means of insulating pull rods which transfer the rotation of the shaft to the moving contacts bringing them in sweep motion in the plane perpendicular to the disconnector base.
The intrepole isolation is an air gap. In models with a smaller interpole scale, the air gap is further assisted by isolating plates. The disconnectors may be opened and closed by the following operating mechanisms:

- manual: type NRWO4/...-3 or HE,
- pneumatic, type NP9,
- motor, type UEMC40A_,
- insulating stick.

The disconnectors, equipped with manual, motor or pneumatic operating mechanism, may operate in horizontal or vertical position (driven by insulating stick - only in vertical position).
The construction of disconnectors allows for the addition of earthing switches. Earthing switches may be located on pivot side (lower earthing switches) or on opening (upper earthing switches). At the base of the disconnector there is an earth terminal with M12×40 screw. Between the disconnector shaft and the earthing switch shaft, there is a mechanical interlocking ensuring the proper order of switching.
4. Equipment

Disconnectors type OWIII are equipped with an operating lever set on the shaft, which can be moved every 10° within the limits of a full
turn. This lever is for coupling with operating mechanism type NRWO4/...-3 and with a lever arm which is an extension of the operating lever, meant for driving the disconnector by means of an insulating stick. In the case of disconnectors with motor operating mechanism UEMC40A_ there is no lever. Instead, there is an assembly of bevel gear linking with the operating mechanism.
The disconnectors may be equipped with an auxiliary switch (type
PS-3 or PS-O) coupled with the apparatus, located on the end of the shaft opposite to the operating mechanism. Standard number of auxiliary switch contacts is 12 ($6 \mathrm{NO}+6 \mathrm{NC}$).
5. Technical data

The technical data of disconnectors are tabulated in the table 4 on pages 14-15.
6. Standards

Disconnectors type OWII comply with the standards:
IEC 62271-1:2007, IEC 62271-102:2001.

7. Spare parts

The apparatus, for the duration of its technical lifetime, i.e. 1000 operations, does not require spare parts. On the user's request, spare parts may be supplied for those damaged during random events, however, their replacement should be consulted with the manufacturer each time, and made by ABB service or by employees of other companies who have been trained by the manufacturer.

8. Information to be given with orders

The following information should be given with order: product full name, rated voltage, rated current and type of the apparatus. Operating mechanisms for the disconnectors should be ordered separately.

9. Examples of orders

1. A disconnector for rated voltage 24 kV , rated current 630 A , equipped with lower earthing, with ceramic insulators:
"Three pole indoor disconnector, 24 kV , 630A with lower earthing switch, type OWIII 20/6UD-1".
2. A disconnector for rated voltage 24 kV , rated current 630 A , equipped with upper earthing switch, with resin insulators, with pneumatic operating mechanism type NP9 assembled on the left hand side: "Three pole indoor disconnector, $24 \mathrm{kV}, 630 \mathrm{~A}$ with upper earthing switch, type OWIII 20/6UG-2 + NP9 on the left".
3. Dimensional drawings

- OW3/10.01,
- OW3/11.01,
- OW3/12.01,
- OW3/13.01,
- OW3/14.01.

Table 4. Technical data of disconnectors type OWIII

Disconnectors for voltage 17,5 and 24 kV

Type					$\begin{aligned} & \text { N N } \\ & \text { N } \\ & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned} 0$						
Rated voltage [kV]		17,5		24							
Frequency [Hz]		50									
Righted power frequency withstand voltage [kV]	to earth and between poles	38		50							
	between contacts	45		60							
Lightning impulse withstand voltage [kV]	to earth and between poles	95		125							
	between contacts	110		145							
Rated continuous current [A]		630	1250	630			800	1000	800	1000	1250
Rated peak withstand current [kA]		40	40	50	63	40	50	50	63	63	80
Rated short-time withstand current [kA]	1 s	16	16	-	25	16	-	-	25	25	31,5
	3 s	-	-	20	-	-	20	20	-	-	-
Disconnector mass / mass disconnector with earthing switch [kg]		46/56	68/78	48/58	39/49	38/47	48/58	48/58	39/49	25	70/81
Maximum distance of first bracket at rated peak current [mm]		400		700		500	700				

Disconnectors for voltage 36 kV					
Type					
Rated voltage [kV]				36	
Frequency [Hz]				50	
Righted power frequency withstand voltage [kV]	to ear	and between poles		70	
		between contacts		80	
Lightning impulse withstand voltage [kV]	to earth and between poles		170		
		between contacts		195	
Rated continuous current [A]			630	1250	1600
Rated peak withstand current [kA]			50	80	80
Rated short-time withstand current [kA]		1 s	-	31,5	31,5
		3 s	20	-	
Disconnector mass / mass disconnector with earthing switch [kg]			78/90	90/104	90/104
Maximum distance of first bracket at rated peak current [mm]			1000		

Dimensional drawings Indoor disconnectors type OWIII

Type	Dimension													
	A1	A2	A3	A4	A5	A6	B1	B2	B3	C1	C2	C3	C4	C5
OWIII 7,2/6-1	300	260	354	-	-	220	455	248	-	700	510	480	160	190
OWIII10/6,8,10-1	300	260	354	-	-	220	455	248	-	780	590	560	200	190
OWIII 10/6,8,10-2	300	260	355	-	-	220	455	263	-	780	590	560	200	190
OWIII 10/6-2/125	300	260	355	93	485	220	455	263	494	630	440	410	125	190
OWIII 10/12-1	335	295	463	-	-	255	472	250	-	780	590	560	200	190
OWIII 17,5/6-1	400	360	454	-	-	320	654	353	-	930	610	580	210	255
OWIII 17,5/12-1	435	395	563	-	-	355	677	355	-	990	670	640	240	255
OWIII 20/6,8,10-1	400	360	454	-	-	320	654	353	-	1060	740	710	275	255
OWIII 20/6,8,10-2	400	360	455	-	-	320	654	360	-	1060	740	710	275	255
OWIII 20/6-2/160	400	360	455	153	705	320	654	360	764	830	510	480	160	255
OWIII 20/12-1	435	395	563	-	-	355	677	355	-	1060	740	710	275	255
OWIII 30/6-2	550	510	594	-	-	460	875	456	-	1460	950	920	360	370
OWIII 30/12-2	565	525	716	-	-	460	925	460	-	1460	1020	990	390	370
OWIII 30/16-2	565	525	716	-	-	460	925	460	-	1460	1020	990	390	370

Dimensional drawings

Indoor disconnectors type OWIII with lower earthing switch

Drawing No. OW3/11.01

سоэ"!sdəu"ммм -ـ
Provided by Northeast Power Systems, Inc.

Type	Dimension														
	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	C1	C2	C3	C4	C5
OWIII 7,2/6UD-1	300	260	354	-	-	541	220	455	248	-	700	510	480	160	190
OWIIII10/6,8,10UD-1	300	260	354	-	-	541	220	455	248	-	780	590	560	200	190
OWIII 10/6,8,10UD-2	300	260	355	-	-	541	220	455	263	-	780	590	560	200	190
OWIII 10/6UD-2/125	300	260	355	93	485	541	220	455	263	494	630	440	410	125	190
OWIII 10/12UD-1	335	295	463	-	-	541	255	472	250	-	780	590	560	200	190
OWIII 17,5/6UD-1	400	360	454	-	-	736	320	654	353	-	930	610	580	210	255
OWIII 17,5/12UD-1	435	395	563	-	-	736	355	677	355	-	990	670	640	240	255
OWIII 20/6,8,10UD-1	400	360	454	-	-	736	320	654	353	-	1060	740	710	275	255
OWIII 20/6,8,10UD-2	400	360	455	-	-	736	320	654	360	-	1060	740	710	275	255
OWIII 20/6UD-2/160	400	360	455	153	705	736	320	654	360	764	830	510	480	160	255
OWIII 20/12UD-1	435	395	563	-	-	771	355	677	355	-	1060	740	710	275	255
OWIII 30/6UD-2	550	510	594	-	-	967	460	875	456	-	1460	950	920	360	370
OWIII 30/12UD-2	565	525	716	-	-	982	460	925	460	-	1460	1020	990	390	370
OWIII 30/16UD-2	565	525	716	-	-	982	460	925	460	-	1460	1020	990	390	370

Dimensional drawings

Indoor disconnectors type OWIII with upper earthing switch

Drawing No. OW3/12.01

Type	Dimension														
	A1	A2	A3	A4	A5	A6	A7	B1	B2.	B3	C1	C2.	C3	C4	C5
OWIII 7,2/6UG-1	300	260	354	\checkmark	-	541	220	455	248	-	700	510	480	160	190
OWIII 10/6,8,10UG-1	300	260	354	-	-	541	220	455	248	-	780	590	560	200	190
OWIII 10/6,8,10UG-2	300	260	355	-	-	541	220	455	263	-	780	590	560	200	190
OWIII 10/12UG-1	335	295	463	-	-	541	255	472	250	-	780	590	560	200	190
OWIII 17,5/6UG-1	400	360	454	-	-	736	320	654	353	-	930	610	580	210	255
OWIII 17,5/12UG-1	435	395	563	-	-	736	355	677	355	-	990	670	640	240	255
OWIII 20/6,8,10UG-1	400	360	454	-	-	736	320	654	353	-	1060	740	710	275	255
OWIII 20/6,8,10UG-2	400	360	455	-	-	736	320	654	360	-	1060	740	710	275	255
OWIII 20/6UG-2/160	400	360	455	519	705	736	320	654	360	764	830	510	480	160	255
OWIII 20/12UG-1	435	395	563	-	-	771	355	677	355	-	1060	740	710	275	255
OWIII 30/6UG-2	550	510	594	-	-	967	460	875	456	-	1460	950	920	360	370
OWIII 30/12UG-2	565	525	716	-	-	982	460	925	460	-	1460	1020	990	390	370
OWIII 30/16UG-2	565	525	716	-	-	982	460	925	460	-	1460	1020	990	390	370

Dimensional drawings Indoor disconnector type OWIII with pneumatic operating mechanism

Drawing No. OW3/13.01

Type			Dimension
			A7
OWIII 10/6-1	OWIII 10/6UD-1	OWIII 10/6UG-1	306
OWIII 10/6-2	OWIII 10/6UD-2	OWIII 10/6UG-2	306
OWIII 10/6-2/125	-	-	306
OWIII 10/16-1	OWIII 10/16UD-1	OWIII 10/16UG-1	286
OWIII 20/6-1	OWIII 20/6UD-1	OWIII 20/6UG-1	291
OWIII 20/6-2	OWIII 20/6UD-2	OWIII 20/6UG-2	291
OWIII 20/6-2/160	OWIII 20/6UD-2/160	OWIII 20/6UG-2/160	291
OWIII 20/12-1	OWIII 20/12UD-1	OWIII 20/12UG-1	276
OWIII 30/6-2	OWIII 30/6UD-2	OWIII 30/6UG-2	261
OWIII 30/12-2	OWIII 30/12UD-2	OWIII 30/12UG-2	261
OWIII 30/16-2	OWIII 30/16UD-2	OWIII 30/16UG-2	261

Dimensional drawings

Indoor disconnector type
OWIII with auxiliary switch

Manual Operating Mechanism - Indoor type NRWO4-3

1. Application

NRWO4-3 operating mechanisms are used for closing and opening disconnectors and earthing switches (attached to indoor disconnectors) for voltages up to 36 kV .

2. Operating conditions

NRWO4... operating mechanisms may be installed in indoor distribution devices.

3. Description of types

NRWO4... operating mechanisms may be installed in indoor distribution devices.

NRWO4-3	L	/NO5 (220)	/PS-3 (12)
Marking of the NRWO4-3 group operating mechanisms	L- connection rod on the left side of the operating mechanism P - connection rod on the right side of the operating mechanism	NO5 - NO5 electromagnetic locking device (voltage current) BM - mechanical locking device.	PS-3 - PS-3 auxiliary switch - additional information on number of contacts is given in parentheses (12; 10; 8; 6) PSO - PSO auxiliary switch additional information on number of contacts ($12 ; 10 ; 8 ; 6$)

4. Construction and operating principle

The NRW04... manual operating mechanism is a four-bar linkage with cranks and rocking levers. It contains a hand lever, arched pull rod, a double lever welded to the shaft terminated on one side with multinotches and two side plates, between which the entire kinematic configuration is located. Operation is possible by appropriate use of the four-bar linkage properties, which - by setting the crank - causes the rocking lever and the attached connecting lever to rotate. Rotation of this lever is transferred, by means of the pull rod, to the lever on the disconnector shaft. The hand lever has a knob at the top. The two side plates contain a sleeve for assembling the locking device. Fenders are also welded in order to limit deviation of the hand lever. The auxiliary switch is located on the bracket fixed to the upper edges of the side plates and is connected to the drive shaft by means of a special mechanism, which shifts the moving contacts in the final stages of shaft movement.
5. Equipment

- a pull rod for linking the operating mechanism with the disconnector 2000 mm long (standard equipment)
- mechanical locking device (optional)
- NO5 electromagnetic locking device (optional) - rated voltage 24/110/220 V DC
- PS-3 or PS-O auxiliary switch (optional), number of contacts: 12, 10, 8, 6

6. Technical data
a) Angle of shaft rotation 115°
b) Length of operating mechanism hand lever 350 mm
c) Angle of hand lever rotation 170°
d) Weight ca 8 kg
7. Standards

NRWO4... operating mechanisms comply with the standard IEC 129 (1984).

8. Remarks on spare parts

The operating mechanism does not contain any sub-assemblies, parts or items, which are subject to replacement as a result of use. At the user's request, accessories damaged in the event of unforeseen circumstances may be supplied. However, their replacements must be agreed with the manufacturer each time.
9. Information to be given with orders

The following information should be given with order: product full name, type of operating mechanism, type of equipment as in p.5.
10. Example of an order
manual operating mechanism - NRWO4-3 -L/NO5 (220)/PSO (10). The above is an example of an order for a manual operating mechanism - indoor - NRWO4-3 with connection rod on the left side, equipped with an electromagnetic NO5 locking device for voltage 220 V DC and PSO auxiliary contact with 10 contacts.

Dimensional drawing
 Manual operating mechanisms type NRWO4-3

NRW04-3-P...
Locking device may be installed on the reverse side of the operating mechanism.

Motor operating device type UEMC40

1. General

The UEMC 40 A_, and UEMC 40 B_ motor operating devices are intended for indoor mounting on medium voltage disconnectors and earthing switches.
Operation can be performed both electrically or by means of the manual operating lever. Operating time is about $5 . . .8$ s depending on the type of device and loading conditions.

2. Standards

The motor operating device complies with

- IEC 265 (1983)
- VDE 0530 motor voltage test

Rys. 1

1. Power unit
2. Limit switch
3. Guide pin
4. Coupling ring
5. Locking catch
6. Motor
7. Terminal block
8. Control push button
9. M.c.b.
10. Contactor
11. Lever
12. Nut
13. Construction

Power is transfered from the motor through a gear wheel and threaded shaft to the operating axel. The direction of operation for open and close control can be reversed by changing the motor's direction of rotation. The threaded shaft gear is assembled from a round stainless steel shaft and one or two bronze nuts. The shaft is selflocking which means that the operating device cannot be rotated with a force from the operating axel. This also applies if the operating device is in the central position. The nuts transfer the power through the specially formed lever to the operating axel. The lever is formed so that it can be locked in the extream position. By disengaging the coupling ring, manual operation can be performed by means of the control lever.
Both the gear wheel and the threaded shaft are greased with low temperature grease which ensures correct operation in temperatures as low as $-50^{\circ} \mathrm{C}$..
4. Mechanical locking

The unit is fitted with a locking device which also includes a switch to prevent the motor from operating. The locking unit mechanically locks the operating device and is strong enough to withstand the driving force of the motor if the blocking switch S12 fails. The locking unit locks both the motor operating device and the manual operating device.

5. Electrical operation

Motor operating device type UEMC 40 A1_, B1_ are fitted with a lower level of electrical components, and require a separate control unit, such as UEZJ 1 or UEZJ 2. Refer to circuit diagram: 31 UEMC 79.
Motor operating device type UEMC 40 A2_, B2_ are equipped with a complete control system including contactors, I- and Opush buttons and m.c.b. Refer to circuit diagram: 31 UEMC 81.

6. Technical details

- Operating time at standard load: 5 to 8 s
- Direction of operation: clockwise to close easily changeable
- Motor: Rectified DC, permanent magnet type
- Terminal block 6 mm²

Rated voltage	Normal control current $\left.^{*}\right)$	Max. current**) M.c.b.	
24 V DC	12 A	40 A	STO S272 K8

* Rated current is the current under normal working conditions.
${ }^{* *}$ Max. current is the current for a stalled load from the motor operating device.

Secification	Unit	UEMC 40		UEMC 40	
		A1	A2	B1	B2
Torque:	[Nm]	200	200	300	300
Weight:	[kg]	14,5	14,5	12,5	12,5
Contactors:					
Closing power:	[W]	3	3	3	3
Holding power:	[W]	3	3	3	3
Shortest control pulse	[s]	0,1	0,1	0,1	0,1
Operating angle:	degr.	190	190	110	110
	degr.	$210{ }^{1)}$	210)	-	-

[^0]
7. Equpment

Operating handle 1YMX053235M0001
The operating handle is insulated and fitted with an insulated grip.

Extension shaft UEMC ZL24
Includes:

- shaft 240 mm (splined)
- extention socket 70 mm (splines to splines)

The shaft have cutting grooves at regular intervals.
$\varnothing 25$ splined / $\varnothing 25$ splined

Coupling ring UEMZ 452
Increases the operating angle to 210° for motor operating devices UEMC 40 A_

Protective m.c.b.
Used to connect the supply circuit and protect the motor against overloading.

Motor voltage	Miniature circuit breaker type
24 V DC	- STO S272 K8
48 V DC	- STO S272 K4
60 V DC	
110 V DC	
125 V DC	
110 V AC	
220 V DC	
230 V AC	

Auxiliary contact for m.c.b.

- STO S 2-S/H

Includes 2 pcs. change-over contacts.

Operating box UEZJ 2-

Type	Circuit diagram
UEZJ 2-24 V DC	31 UEMC 148
UEZJ 2-48V DC	31 UEMC 148
UEZJ 2-60 V DC	31 UEMC 148
UEZJ 2-110 V DC	31 UEMC 148
UEZJ 2-125V DC	31 UEMC 148
UEZJ 2-220 V DC	31 UEMC 148
UEZJ 2-110 V AC	31 UEMC 148
UEZJ 2-230 V AC	31 UEMC 148
UEZJ 2 - UU ${ }^{\text {1) }}$	31 UEMC 149

[^1]

Control unit UEZJ 1-

Typ	Circuit diagram
UEZJ 1-24 V DC	31 UEMC 141
UEZJ 1-48V DC	31 UEMC 141
UEZJ 1-60 V DC	31 UEMC 141
UEZJ 1-110 V DC	31 UEMC 141
UEZJ 1-125 V DC	31 UEMC 141
UEZJ 1-220 V DC	31 UEMC 141
UEZJ 1-110 V AC	31 UEMC 141
UEZJ 1-230 V AC	31 UEMC 141
UEZJ 1-UU1)	31 UEMC 142

${ }^{\text {1) }}$ Set type UEZJ IUU is to be ordered when different motor and auxiliary voltages are to be used. Please give details of the voltages when ordering.

Control push buttons UEZJ 3
Includes:

- I -button, with text:
- O -button, with text:
(CLOSE)
OPEN
- On/Off selector switch, with text: REMOTE ON/OFF

Adjuster coupling UEMC ZL9
Provides facility to adjust the extreme positions exactly and to reduce control angle steplessly max 30°.

Adjuster coupling UEMC ZL10
Provides facility to adjust the extreme positions exactly and to reduce control angle steplessly max 30°.

Ø25 splined
ø25 splined

Joint UEMC ZL7
For transmitting the operating movement through an angle of $\max 40^{\circ}$.

For tube diameter: 3/4" (26.9 mm)

8. Dimension drawing

13 UEMC 408 D

Front panel drilling
9. Exampes of applications for disconnectors

UEMC40A_ with disconnector OWIII/ OWD - connection through an angle of max. 40°

7 - Connection rod (L=1,3 m) 1YMX000004M0003
8 - Adjuster coupling UEMC ZL10
9 - Auxiliary switch complete OW3 4 E01... (option)

* NRK2/2 in case use of extension shaft (pos.5); NRK 2/1 if directly on the OWIII shaft.

If there is no possibility connection through an angle of max. 40° it should be with angle 90° as below:

UEMC40A _ with disconnector OWIII/ OWD - connection through an angle of 90°

Example of connection UEMC40B2 with disconnector OWIII30/16-2

www.nepsi.com
11. Circuit diagrams

31 UEMC 79 C UEMC40A1, B1

For types : UEMC 40 A1-24, 48, 60, 110, 125, 220 V DC UEMC 40 B1-24, 48, 60, 110, 125, 220 V DC

M1 - Motor
S1, S2 - Limit switches
S12 - Blocking switch for locking

* R2 - Heater (to be ordered separately)

1 UEMC 81 L UEMC40A2, B2

For types : UEMC 40 A2-24, 48, 60, 110, 125, 220 V DC; 110, 230 V AC; UU**)
UEMC 40 B2 - 24, 48, 60, 110, 125, 220 V DC; 110, 230 V AC; UU**)

F1	- M.c.b.
S45	- Push buttons (I and O)
M1	- Motor
K1, K2	- Operating contactors
K3	- Relay for 48-220 V
S1, S2	- Limit switches
S12	- Blocking switch, locking
V5	- Rectifier for AC
V1-V3	- Diodes for DC
R1	- Resistor for 110-230 V

*) R2 - Heater (to be ordered separately)
**) Detail motor and aux. voltage

Control unit UEZJ 1_
31 UEMC 141 E

For types: UEZJ $1-24,48,60,110,125,220$ V DC; 110, 230 V AC;
*) $\begin{aligned} & -110 \text { VAC } \\ & -230 \text { VAC }\end{aligned}$
(L1)
(+)

31 UEMC 142 D

For types: UEZJ 1_UU
Note: DC contactors

30 Indoor disconnectors OWD and OWIII

Operating box UEZJ 2_
31 UEMC 148 D

*) -110 VAC
 - 230 VAC

(L1)

(+)

For types: UEZJ $2-24,48,60,110,125,220$ V DC; 110, 230 V AC;

> contactors

K1, K2 - Operating
S4, S5 - Push buttons
S6 - Remote control selector

- Relay for 48-230 V
R1 - Resistor for 110-230 V
V1, V2 - Diodes
V5 - Rectifier only for AC
H4 - Position indicator, closed, red
H5
- Position indiگ cator, open, green
H9
- Indicator for $\stackrel{\rightharpoonup}{D}$ fuse trippin-
g,yellow
(N)
$(-)$

31 UEMC 149 E

Example of connection for UEMC 40_ ... + UEZJ 1
31 UEMC 156 D

Alt A
 Clockwise closed

Example of connection for UEMC 40_ ... + UEZJ 2
31 UEMC 161 C

NO5 type electromagnetic interlock

1. Features

- effective interlocking a disconnector control devices in off-voltage state,
- easy operation,
- easymounting on disconnector control unit,
- reliable, metal structure,
- metal parts protected by electroplating or made of stainless steel.

2. Applications

The NO5 type electromagnetic interlock for indoor use is designed to interlock NRWO4 disconnector control devices in open or closed state, enabling a correct operating of such control devices in control and interlocking system of indoor switchgears. The NO5 type interlock, without voltage supply is always locked and its design makes it impossible to take lock back from control lever in a mechanical way without energizing the electromagnet coil.

3. Versions

N05	220
Interlock type	Rated voltage
	220 V DC
	127 V DC
	125 V DC
	110 V DC
	60 V DC
	48 V DC
	24 V DC

4. Design and operation

The NO5 type electromagnetic interlock consists of two main components. The mechanical part is made of a body closedwith cover.
The spring-operated lock is placed in the body.The lock hole ends with nut, whereas the pull rod ends with ring handle. Pusher controlling a micro-switch, which switches in turn voltage fromterminals to the coil, is located in the upper part of the body. The micro-switch with terminals is placed under protective cover. The electromagnetic part consists of a plunger tightenedwith spring. Electromagnet coil is located in a housing fastened to the base. The base with bearing is mounted in the lower part of the interlock body.
In case of the NRWO4 type apparatus interlock is fixed by means of two M5x50 screws. As a result of the interlock's mounting on the disconnector control, the lock is plunged in the hole of control lever, thus disabling its rotation, which in turn makes it impossible to operate the disconnector control device. As a result of pulling the ring handle with hand the pull rod moves along the lock axis, pushing the pusher upwards.
The action in question switches the micro-switch and supplies at the same time the electromagnet coil. The coil magnetic field draws the plunger out from the lock. Further pulling of ring handle causes that the pull rod pulls
the lock with it, which -in turn- drawing out from the disconnector control lever holemakes it possible to operate the disconnector control (pushing the lever in the limit positions, i.e. to closed and open positions).
Leaving the control lever in intermediate position and releasing the interlock ring holder makes the electromagnet operate continuously till the control lever is pushed to limit position. After pushing control lever in position "open" or "closed" and after releasing
the interlock ring holder all springs of interlock mechanism make interlock return automatically to the original state.
The interlock design disables to operate disconnector control devices in the absence of interlock supply voltage coming from control and interlocking system of a switchgear, thus when the operation of disconnector control device is forbidden.

5. Technical data

See table 1.
6. Standards

The NO5 type electromagnetic interlock meets the requirements of the following standards:
IEC 129 (1984).
7. Placing orders

The order must comprise:

- product full name
- type designation
- rated voltage
- quantity ordered

All additional requirements not taken into account in this document must be agreed with manufacturer in form of an inquiry made in writing with the information about the of the requirements (regulations, standards, etc.).
8. Example order

NO5-220 type electromagnetic interlock, rated voltage 220 V DC 10 pcs.

TABLE 1. Technical data of electromagnetic interlocks.

Parameter	Units	Type						
		NO5-220	NO5-127	NO5-125	NO5-110	NO5-60	NO5-48	NO5-24
Coil rated voltage	[V DC]	220	127	125	110	60	48	25
Power consumption	[W]	14	16	16	14	16	16	15
Coil test voltage AC	[kV]	2 -						
Micro-switch test voltage AC	[kV]	2 м						
Lock operating travel $\varnothing 11 \mathrm{~mm}$	[mm]	11 ¢						
Pull rod travel to coupling with lock	[mm]	4 -						
Weight	[kg]							

Overall dimensions

Circuit diagram

Contact us:

ABB Sp. z o.o.
Branch in Przasnysz
59 Leszno Str.
06-300 Przasnysz, Poland
e-mail: marketingmv@pl.abb.com

www.abb.pl

We reserve the right to make technical changes or modi-
fy the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Sp. z o.o. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB Sp. z o.o.
© Copyright 2013 ABB
All rights reserved
M

[^0]: 1) With accessory: Coupling ring UEMZ 452
[^1]: ${ }^{1)}$ Type UEZJ 2-UU is to be ordered when different motor and auxiliary voltages are to be used. Please give details of the voltages when ordering.

